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SELF-SIMILAR MOTION OF AN IONIZED GAS 

EXPELLED BY A MAGNETIC PISTON 

V. V. Beloshitskii, V. S. Komel'kov, 
and G. Yu. Petrushchenko UDC 533.95 

The motion of a gas in plasma accelerators and high-current discharges, under the conditions of  the skin effect, can 
be represented as its ejection by a magnetic piston under the action of  a given current flow along the surface. Such a 
model was first proposed in [ 1 ] to explain the pinch effect. In the initial stage, the law of  the rise in the current is 
approximated rather well by a linear function of  the time, and the magnetic field, by a quadratic law: p = Ct n , where 
n = 2; C = const. Under the usual conditions of  an experiment, the magnetic pressure is much greater than the initial 
pressure of  the gas, and the latter can be neglected. In this case, the motion of  the gas 'is self-similar. An analogous 
problem for a given law of  change in the velocity of  the piston was discussed earlier [2, 3]. 

We shall assume the gas to be ideal and monoatomic, and the process to be adiabatic. The determining parameters 
in the problem will be the coordinate r, the time t, the density of  the unperturbed gas p l ,  and the constant C, determining 

the law of  change in the pressure at the piston (the initial velocity v i = 0 and the initial pressure Pi = 0). From these 
parameters, a single dimensionless variable can be obtained 

r ~ -  P i  r ' IIZ ~ "75" 

For the velocity, the density, and the pressure, we introduce the dimensionless functions V, R, P in the following 
manner: 

o 

r yP v=Tv(x), 0=01R(~), p=~P(~), z=-g, 
then, the system of hydrodynamic equations is brought into the form [4] 

dz [ 2 ( V - - J ) 4 - v ( ? - - t )  V I ( V - - m - - i )  - - ( Y - - I )  V ( V - -  I ) ( V - - m - - I ) - - [ 2 ( V - - I ) - - 2 m ~ l  z . (1) 

dV - -  Z (V - -  m - -  t)"[V (V --  l) (V --  m -- t )--  (2m]~? -~ vV)  z] 

dln~ (V- -m- - t )Z- -z  
dV = V ( V ~ J ) ( V - - m - - I ) - - ( 2 m / 3 ? ~ - v V ) z ;  (2) 

d l n R  ( V - - m - - J )  ~ V(V-- t ) (V- -m-- i ) - - (2m/y4-vV)z  
d In ~. z --  (V --  m -- t) ~ -~- vV, (3) 

where 7 is the ratio of  the specific heat capacities; v = 1, 2, 3, respectively, for plane, cylindrical, and spherical symmetry. 

Let us examine the additional conditions which arise due to the presence of the surface of a strong discontinuity 
ahead of  the piston. We note that, in the shock wave, r is a function of  t. Consequently, the determining parameters in 
the shock wave will be t, P l ,  and C, from which it is impossible to form a dimensionless quantity. Therefore, at the shock 
wave 
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)~2 = l f ' ~  tin21 -- const, 
V P I  r2 

from which the coordinate and velocity of  the shock wave 

/ ~  - tm+l  dr~ r 2 
r 2 = V ~  ~ ' D = ~ = ( m + l )  T" (4) 

Taking into consideration that  a state of  rest corresponds to the point  V, = 0, P~ = 0, R~ = 1, z ~ = 0, from the 

conditions of the conservation of  mass, momentum,  and energy, with a passage through the surface of a strong discontinuity, 
we obtain [ 1 ] 

V~ --  2 (m + t) 
v , z 2 = ( m + l )  ~ 2 v ( v - i )  P 2 = - -  

(7 + t) ~' ' 

(the subscript 2 denotes values behind the shock wave). 

Let us examine the boundary conditions at the piston. We have 

v *  dr* r*  
= -~- - -  7 V* , 

2 (m + l) 2 = v + ~ (5) 
v + t  ' R2 7 - - [  

from which 

r*2 P (~*) = Pl ~-~ P* = Ctn, P* = Pl " 7  

r *  ~- l ? g  lrn+l 
__o 

VP* 

Then 

/ ' U  t ~ 

We go over to the new dimensionless variable 

(6) 

(7) 

~, = Cltm+~/r. (8) 

The problem then reduces to an investigation of  the self-similar, not  fully established mot ion of a gas, expelled by a piston, 

whose velocity varies according to a power law: v* = Clt m, C1 ~ (m + I)V/-C-7-p~P *, m = n/2 (the equation naturally retains 

the same form). This problem was solved in [2, 3] for several values of  m and v. In distinction from these pieces of  work, 
the constant C~ is unknown in the present case; however, the solution of the problem is not  complicated in practice, since 

the value of  C~ is required only for determination of  the scale of  the dimensional quantities, while, for the solution of  the 
system (1)-(3), it  is not  essential, since it enters neither into the equations nor into the expressions for the boundary 
conditions. 

From (6)-(8), we obtain the boundary condition at the piston 

V* = m  + 1 , ) ~ *  = m + t .  

Further,  let us consider the practically interesting case of  plane symmetry (v = 1 and m = 1). The behavior of the 
integral curves of  Eq. (1) in the plane Yz for this case is shown in Fig. 1 (0(0,0) is a node; C(2,0) is a node; D(2,00) is a 
saddle point;  G(1,0) is a node; F(2/(3` + 1), 72(3` -- 1)/(7 + 1)2(7 + 0 .5 )  is a saddle point). The arrows show the direction 
of  the rise in the parameter  X along the integral curves (at the parabola z = (V - 2) 2 , k = Xmm). Since, with a change in r 

from the piston to infinity, 3, decreases monotonical ly from 3`* --- 2 to 0 (the point  of  rest corresponds to the point  0(0,0); 
a continuous passage through the parabola z = (V - 2) 2 is physically impossible. Therefore, we can pass from a state of  
rest to the piston only through the shock wave. Thus, in the plane Vz we have the following picture of  the motion.  From 
infinity, the point  corresponding to a state of rest 0(0,0) goes over jumpwise to a point  with the coordinates (V2, z 2) (5) ; 

then, it  moves along the integral curve up to intersection with the straight line V = 2, corresponding to particles of  the gas 
in contact  with the piston. This integral curve is shown in Fig. 1 by the heavy line (3' = 5/3). 

The system of  equations (1)-(3) was integrated numerically. Equat ion (1) was integrated by the Adams method 
from the point  (V2, z2) to the point  (2 ,0 ) .  We note that, with V - +  2 z = C, (2 - -  V) t/(t+v) -+ 0 ,  the constant C~ is 

determined from values of  z obtained by numerical integration. 

E q u a t i o n  (2) was integrated using the Simpson formula in a reverse direction, since the value of 3  ̀is known at the 
piston and unknown at the shock wave. Equation (3) was brought into the foian 

d l n B "  ~ t V ( V - - 2 ) ~ ' - - z  

~v = v-~ ~ 2 -  v -~- 7 - - 2  (v- -2)  ( v - -  ~) v - -  (2,,v--.v): ' 
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where R'  = R(2 - V) ~/(~+~), and was integrated from the point  (V 2, Ph) up to the piston, also by the Simpson formula. 

Replacement of  variables makes it possible to achieve great exactness, since, with V--~ 2 R = Ca (2 - -  V)-V(t+v) .--~,oo. 

The constant C R is determined from values of  R, obtained by numerical integration. 

Knowing the values of  z and R, values of  P can be calculated for all V. At  the shock wave 

P2 = R~hl?  = 8/(? + t). 
To determine the value of  P* at the piston, we use the asymptotic of  z and R with V - 2: 

P* = (zRl?)v=v,  =-" C~CRI?. 

As the result of  a numerical solution, the values P* = 6.55 and X 2 = 1.73 were obtained. 

Knowing R, z, and P for all values of  V between the shock wave and the piston (1.5 ~< V ~< 2), we can go over 
from dimensionless quantities to dimensional. We shall find the ratios of  the velocity v, the pressure p, the density p, 
and the temperature T to their values at the shock wave (Fig. 2): 

c.~ 2 Po 8 ' 

r / r .  = (v_+ ~ , [ •  
- 2 v ( , ~ + ~ ) 2 ( v - t )  [ ~ 2 ] '  

p 3'--1 

r ~ t .73 
r s ~. ~ 

(these relative values do not  depend on the constants C and P~, which determine the scale). 

We note that  the extreme right-hand point  of  the curve v/v2(r/r 2) in Fig. 2 corresponds not  to the velocity of  the 

shock wave, but to the velocity of  the gas behind the shock wave, which is less than the velocity of  the shock wave, since 

vo = (r~/t)V~, D = (m -1- t)r~./t, V. = 1.5 < 2 .  Thus, the particles of  gas located at the piston cannot overtake the shock 

wave. 

The reversion of  the temperature at  the piston to zero, and of  the density to infinity, is connected with the fact 
that  the initial pressure of  the gas was assumed to be negligibly small. The effects of  the thermal conductivity and the 
viscosity, which are neglected here, are considerable only for a calculation of  the front of the shock wave. 

The approximation of  a flat magnetic piston has been used successfully for a description of the acceleration of a 
plasma in a coaxial gun [5], with a small gap between electrodes, where the radial structure can be neglected. The ejection 
of  a plasma by a piston has been described by a model  of a snow plow. As is well known (see, e.g., [6]), for the validity 
of  this model  it  is sufficient that  all the particles of the accelerated gas be identical. As can be seen from Fig. 2, under 
conditions of an increase of  the current in the gun, the velocity of  the particles from the piston to the shock wave varies 
only within the limits of  20%. A comparison of  the velocity of  the piston, obtained from the snow-plow model  and the 
self-similar solution (7) of  the equations of  hydrodynamics gives the relationship V'T* : ~ - =  t .04 : t �9 In the snow-plow 

model, the velocity is somewhat greater. This is connected with the fact that  it  is the velocity of  the center of gravity of  
a plasma bunch whose size increases. 

The hydrodynamic  model  makes it possible to determine the profile of the bunch along the direction of  the motion. 
In the region near the piston, however, this model  gives an infinite density and a zero temperature, which limits the region 
of  its applicability. This l imitation is bound up with the fact that, at the initial moment ,  the pressure of the piston is 
equal to zero, and the postulat ion of  the smallness of  the pressure of  the gas at this time is not  applicable. Only with the 

passage of  the shock wave over a distance Ax = pJplCl  X 2 does the pressure of the shock wave exceed the initial pressure 

p , .  Using an asymptot ic .solut ion near the piston, it  can be shown that the relative size of  this region decreases with the 

time according to the law 
�9 v§ ( ' )  

Ar 1 3; (P_t P* ~ - ~ t  -2 1+~ 

and its absolute size decreases due to compression: Ar ~ t -2/~.  

Thus, with a finite pressure pa, the solution for the density and the temperature is valid for the greater part of the 
bunch, with the exception of  a small region near the piston, whose absolute and relative size decreases very rapidly with 
the time. Near the piston, the shock Wave does not  heat up the gas, and the density and temperature in this region can be 
evaluated from the condit ion of the adiabaticity of  the motion 

.0 2 = ?_*1,1~ r* ,p*,-~-, 

The width of  the front of  the discontinuity in the density and the pressure is determined, as is well known, by the length 
of  the free flight path (see, e.g., [7]). For  typical experimental conditions [51, it is a quantity of  the order of  tenths of  a 
millimeter, negligibly small in comparison with the dimensions of  the acceleration zone. 
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where 

As follows from (4), (7), with m = 1 the piston and the shock wave move with an equal acceleration: 

v* = g ' t ,  D = gt ,  

g* = (m @ l)l/C/ptP*"; g = (m 4- l)g*,'L,. 

For  the experimental  conditions of  [5], we obtain the value of  the constant 

(dI/dt)  ~ S~ 
C ----- I0 -~ ~ ( S ~ - -  31) In 2 S1 ~ 

valid at the initial moment  of  a discharge in the region of a linear rise in the current, where dI /dt  is the rate of  rise of  the 
current, A/sec; Sa, S 2 are the radii of  the central and external coaxials. For  this exper~,ent ,  if, as S x and S 2, we take the 

radii of a thin filament and of  the cylindrical part  of  the nozzle, we obtain C = 5"102o dyn/cm2"sec 2. In tl'ds case, the 

profiles of  the velocity, the pressure, the density, and the temperature,  given in Fig. 2, are valid with t >> t 1 = 60 nsec in 

the whole region of  a change in r]r 2, with the exception of  a section near a piston of  width h r / r  2 ~ 3 . t O - V t 2 .  6 , where t is 

the time, psec. 

However, the piston is a hot  current-carrying layer of  gas, heated by Joule losses, which leads, as evaluatiolas show, 
to heating of  an adjacent layer of  gas due to electronic thermal conductivity and the diffusion of a magnetic field with a 

Ar/r2 ~ 2.  tO-2 / t  e.t and 5"10"2/t 2,I, respectively. This argues that, at the start  of  the acceleration with t < 0.1 psec, there 

is a possibility of  the permeation of  the plasma through the magnetic piston. The ratio of  the characteristic times of the 
thermal conductivity and the skin-effect to the acceleration time are tT / t  ~ 20P and 270t 3"6 , respectively, which also attests 

to the start of  effective skimming of  the plasma by the piston after 0.1 psec. 
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Figure 3 shows the dependence of  the path on the time for the shock wave 2 and the piston 1, as well as experi- 
mental curves of  the displacement of  the center of  gravity of the current 4 and the front of  the luminescence 3 with a 
pressure of 760 and 400 mm Hg (Fig. 3a and b, repsectively) [5]. I t  can be seen that the pressure of  the current layer 
and the front of  the luminescence, which can be connected with the magnetic piston and the shock wave, are in qualitative 
agreement with Calculation; however, at the initial moment ,  the piston does not  capture the gas completely and, for this 
reason, the experimental  curves lie above the calculated. A shell is obviously formed at a distance of  around 1 cm from 
the point  of  the breakdown, which is in agreement with the above-mentioned evaluations of  the formation time of  the 
piston. Therefore, lines 5 and 6 show experimental  curves with a shift of the point  of  breakdown downward by 1 cm with 
respect to the point  of  formation of  the shell. With lower pressures (30-100 mm Hg), the discharge starts in the conical 
part  of  a nozzle of  variable cross section, and there is ablation of  the insulator; therefore, a comparison between calculation 
and experiment is not  justified here, since in this case the constant of  the magnetic pressure depends on the time. 

The authors wish to express their thanks to V. S. Imshennik for his valuable evaluation of  the work. 
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DEVELOPMENT OF DYNAMIC FORMS OF BUCKLING OF 

ELASTOPLASTIC BEAMS WITH INTENSIVE LOADING 

V. M. Kornev, A. V. Markin, and I. V. Yakovlev UDC 624.074.4 

1. We consider an I-beam. At  the initial moment  of time, an intensive longitudinal constant load is suddently 
applied to the beam; in the theoretical analysis, longitudinal vibrations are not  taken into consideration. The intensive 
compressive loading is considerably greater than an Euler loading [ 1]. We assume that this compressive load corresponds 
to stresses exceeding the elastic limit. I t  is assumed that the bending takes place in the plane of the web, while the bend- 
ing moment  is taken up only by the flanges of the I-beam. A study is made of the development with time of the forms 
of inelastic buckling of  beams with small normal bends w. Equating the sum of the internal forces with respect to the 
neutral line to the external moment ,  we find the equation of the curved axis of the I-beam [2] 

TIw.~x.~ + Nw:~ + pSw~t = --Ar(w0.~ + wlxx). (1.1) 

Since, before loading, the freely supported beam was at rest, the initial and boundary conditions have the form 

w = w  t = 0 ,  t = 0 ,  O ~ z ~ L ;  
w =w~.~ = 0 ,  x = 0 ,  L, t ~ 0 ,  (1.2) 

where w is the additional normal deflection; x and t are the longitudinal coordinate and the time; N is an intensive 
longitudinal load; T = 2E1EJ(E1 -k E~) the modulus of elasticity and relief; E 2 is the reduction modulus (Fig. 1); E = E 1 is 

the tangential modulus;  w o and w 1 are the initial regularities of the beam and the shift of  the central line for cross sections of  
the beam; S and I are the constant area and moment  of  inertia of  a transverse cross section; L is the length of  the beam. 

The function w I (x), characterizing the shift of the central line, is subject to determination. With determination of  

w~, use is made of  an idealized o - e  diagram, Fig. 1, and the assumption N = const. Figure 2a shows an I-beam; the 

flanges of  the I-beam are connected by a thin web. Three cases of  the loading of beams at the initial moment  of time 
(t  -- 0) are considered: 1) the beam remains elastic; 2) the stresses in the beam considerably exceed the elastic limit (point  
c on the idealized diagram of Fig. 1); 3) the stresses coincide with the elastic limit (point  b on the idealized diagram). The 
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